lcode.c 51 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832
  1. /*
  2. ** $Id: lcode.c $
  3. ** Code generator for Lua
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define lcode_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. #include <float.h>
  10. #include <limits.h>
  11. #include <math.h>
  12. #include <stdlib.h>
  13. #include "lua.h"
  14. #include "lcode.h"
  15. #include "ldebug.h"
  16. #include "ldo.h"
  17. #include "lgc.h"
  18. #include "llex.h"
  19. #include "lmem.h"
  20. #include "lobject.h"
  21. #include "lopcodes.h"
  22. #include "lparser.h"
  23. #include "lstring.h"
  24. #include "ltable.h"
  25. #include "lvm.h"
  26. /* Maximum number of registers in a Lua function (must fit in 8 bits) */
  27. #define MAXREGS 255
  28. #define hasjumps(e) ((e)->t != (e)->f)
  29. static int codesJ (FuncState *fs, OpCode o, int sj, int k);
  30. /* semantic error */
  31. l_noret luaK_semerror (LexState *ls, const char *msg) {
  32. ls->t.token = 0; /* remove "near <token>" from final message */
  33. luaX_syntaxerror(ls, msg);
  34. }
  35. /*
  36. ** If expression is a numeric constant, fills 'v' with its value
  37. ** and returns 1. Otherwise, returns 0.
  38. */
  39. static int tonumeral (const expdesc *e, TValue *v) {
  40. if (hasjumps(e))
  41. return 0; /* not a numeral */
  42. switch (e->k) {
  43. case VKINT:
  44. if (v) setivalue(v, e->u.ival);
  45. return 1;
  46. case VKFLT:
  47. if (v) setfltvalue(v, e->u.nval);
  48. return 1;
  49. default: return 0;
  50. }
  51. }
  52. /*
  53. ** Get the constant value from a constant expression
  54. */
  55. static TValue *const2val (FuncState *fs, const expdesc *e) {
  56. lua_assert(e->k == VCONST);
  57. return &fs->ls->dyd->actvar.arr[e->u.info].k;
  58. }
  59. /*
  60. ** If expression is a constant, fills 'v' with its value
  61. ** and returns 1. Otherwise, returns 0.
  62. */
  63. int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
  64. if (hasjumps(e))
  65. return 0; /* not a constant */
  66. switch (e->k) {
  67. case VFALSE:
  68. setbfvalue(v);
  69. return 1;
  70. case VTRUE:
  71. setbtvalue(v);
  72. return 1;
  73. case VNIL:
  74. setnilvalue(v);
  75. return 1;
  76. case VKSTR: {
  77. setsvalue(fs->ls->L, v, e->u.strval);
  78. return 1;
  79. }
  80. case VCONST: {
  81. setobj(fs->ls->L, v, const2val(fs, e));
  82. return 1;
  83. }
  84. default: return tonumeral(e, v);
  85. }
  86. }
  87. /*
  88. ** Return the previous instruction of the current code. If there
  89. ** may be a jump target between the current instruction and the
  90. ** previous one, return an invalid instruction (to avoid wrong
  91. ** optimizations).
  92. */
  93. static Instruction *previousinstruction (FuncState *fs) {
  94. static const Instruction invalidinstruction = ~(Instruction)0;
  95. if (fs->pc > fs->lasttarget)
  96. return &fs->f->code[fs->pc - 1]; /* previous instruction */
  97. else
  98. return cast(Instruction*, &invalidinstruction);
  99. }
  100. /*
  101. ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
  102. ** instruction is also OP_LOADNIL and ranges are compatible, adjust
  103. ** range of previous instruction instead of emitting a new one. (For
  104. ** instance, 'local a; local b' will generate a single opcode.)
  105. */
  106. void luaK_nil (FuncState *fs, int from, int n) {
  107. int l = from + n - 1; /* last register to set nil */
  108. Instruction *previous = previousinstruction(fs);
  109. if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
  110. int pfrom = GETARG_A(*previous); /* get previous range */
  111. int pl = pfrom + GETARG_B(*previous);
  112. if ((pfrom <= from && from <= pl + 1) ||
  113. (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
  114. if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
  115. if (pl > l) l = pl; /* l = max(l, pl) */
  116. SETARG_A(*previous, from);
  117. SETARG_B(*previous, l - from);
  118. return;
  119. } /* else go through */
  120. }
  121. luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
  122. }
  123. /*
  124. ** Gets the destination address of a jump instruction. Used to traverse
  125. ** a list of jumps.
  126. */
  127. static int getjump (FuncState *fs, int pc) {
  128. int offset = GETARG_sJ(fs->f->code[pc]);
  129. if (offset == NO_JUMP) /* point to itself represents end of list */
  130. return NO_JUMP; /* end of list */
  131. else
  132. return (pc+1)+offset; /* turn offset into absolute position */
  133. }
  134. /*
  135. ** Fix jump instruction at position 'pc' to jump to 'dest'.
  136. ** (Jump addresses are relative in Lua)
  137. */
  138. static void fixjump (FuncState *fs, int pc, int dest) {
  139. Instruction *jmp = &fs->f->code[pc];
  140. int offset = dest - (pc + 1);
  141. lua_assert(dest != NO_JUMP);
  142. if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
  143. luaX_syntaxerror(fs->ls, "control structure too long");
  144. lua_assert(GET_OPCODE(*jmp) == OP_JMP);
  145. SETARG_sJ(*jmp, offset);
  146. }
  147. /*
  148. ** Concatenate jump-list 'l2' into jump-list 'l1'
  149. */
  150. void luaK_concat (FuncState *fs, int *l1, int l2) {
  151. if (l2 == NO_JUMP) return; /* nothing to concatenate? */
  152. else if (*l1 == NO_JUMP) /* no original list? */
  153. *l1 = l2; /* 'l1' points to 'l2' */
  154. else {
  155. int list = *l1;
  156. int next;
  157. while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
  158. list = next;
  159. fixjump(fs, list, l2); /* last element links to 'l2' */
  160. }
  161. }
  162. /*
  163. ** Create a jump instruction and return its position, so its destination
  164. ** can be fixed later (with 'fixjump').
  165. */
  166. int luaK_jump (FuncState *fs) {
  167. return codesJ(fs, OP_JMP, NO_JUMP, 0);
  168. }
  169. /*
  170. ** Code a 'return' instruction
  171. */
  172. void luaK_ret (FuncState *fs, int first, int nret) {
  173. OpCode op;
  174. switch (nret) {
  175. case 0: op = OP_RETURN0; break;
  176. case 1: op = OP_RETURN1; break;
  177. default: op = OP_RETURN; break;
  178. }
  179. luaK_codeABC(fs, op, first, nret + 1, 0);
  180. }
  181. /*
  182. ** Code a "conditional jump", that is, a test or comparison opcode
  183. ** followed by a jump. Return jump position.
  184. */
  185. static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
  186. luaK_codeABCk(fs, op, A, B, C, k);
  187. return luaK_jump(fs);
  188. }
  189. /*
  190. ** returns current 'pc' and marks it as a jump target (to avoid wrong
  191. ** optimizations with consecutive instructions not in the same basic block).
  192. */
  193. int luaK_getlabel (FuncState *fs) {
  194. fs->lasttarget = fs->pc;
  195. return fs->pc;
  196. }
  197. /*
  198. ** Returns the position of the instruction "controlling" a given
  199. ** jump (that is, its condition), or the jump itself if it is
  200. ** unconditional.
  201. */
  202. static Instruction *getjumpcontrol (FuncState *fs, int pc) {
  203. Instruction *pi = &fs->f->code[pc];
  204. if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
  205. return pi-1;
  206. else
  207. return pi;
  208. }
  209. /*
  210. ** Patch destination register for a TESTSET instruction.
  211. ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
  212. ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
  213. ** register. Otherwise, change instruction to a simple 'TEST' (produces
  214. ** no register value)
  215. */
  216. static int patchtestreg (FuncState *fs, int node, int reg) {
  217. Instruction *i = getjumpcontrol(fs, node);
  218. if (GET_OPCODE(*i) != OP_TESTSET)
  219. return 0; /* cannot patch other instructions */
  220. if (reg != NO_REG && reg != GETARG_B(*i))
  221. SETARG_A(*i, reg);
  222. else {
  223. /* no register to put value or register already has the value;
  224. change instruction to simple test */
  225. *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
  226. }
  227. return 1;
  228. }
  229. /*
  230. ** Traverse a list of tests ensuring no one produces a value
  231. */
  232. static void removevalues (FuncState *fs, int list) {
  233. for (; list != NO_JUMP; list = getjump(fs, list))
  234. patchtestreg(fs, list, NO_REG);
  235. }
  236. /*
  237. ** Traverse a list of tests, patching their destination address and
  238. ** registers: tests producing values jump to 'vtarget' (and put their
  239. ** values in 'reg'), other tests jump to 'dtarget'.
  240. */
  241. static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
  242. int dtarget) {
  243. while (list != NO_JUMP) {
  244. int next = getjump(fs, list);
  245. if (patchtestreg(fs, list, reg))
  246. fixjump(fs, list, vtarget);
  247. else
  248. fixjump(fs, list, dtarget); /* jump to default target */
  249. list = next;
  250. }
  251. }
  252. /*
  253. ** Path all jumps in 'list' to jump to 'target'.
  254. ** (The assert means that we cannot fix a jump to a forward address
  255. ** because we only know addresses once code is generated.)
  256. */
  257. void luaK_patchlist (FuncState *fs, int list, int target) {
  258. lua_assert(target <= fs->pc);
  259. patchlistaux(fs, list, target, NO_REG, target);
  260. }
  261. void luaK_patchtohere (FuncState *fs, int list) {
  262. int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
  263. luaK_patchlist(fs, list, hr);
  264. }
  265. /* limit for difference between lines in relative line info. */
  266. #define LIMLINEDIFF 0x80
  267. /*
  268. ** Save line info for a new instruction. If difference from last line
  269. ** does not fit in a byte, of after that many instructions, save a new
  270. ** absolute line info; (in that case, the special value 'ABSLINEINFO'
  271. ** in 'lineinfo' signals the existence of this absolute information.)
  272. ** Otherwise, store the difference from last line in 'lineinfo'.
  273. */
  274. static void savelineinfo (FuncState *fs, Proto *f, int line) {
  275. int linedif = line - fs->previousline;
  276. int pc = fs->pc - 1; /* last instruction coded */
  277. if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
  278. luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
  279. f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
  280. f->abslineinfo[fs->nabslineinfo].pc = pc;
  281. f->abslineinfo[fs->nabslineinfo++].line = line;
  282. linedif = ABSLINEINFO; /* signal that there is absolute information */
  283. fs->iwthabs = 1; /* restart counter */
  284. }
  285. luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
  286. MAX_INT, "opcodes");
  287. f->lineinfo[pc] = linedif;
  288. fs->previousline = line; /* last line saved */
  289. }
  290. /*
  291. ** Remove line information from the last instruction.
  292. ** If line information for that instruction is absolute, set 'iwthabs'
  293. ** above its max to force the new (replacing) instruction to have
  294. ** absolute line info, too.
  295. */
  296. static void removelastlineinfo (FuncState *fs) {
  297. Proto *f = fs->f;
  298. int pc = fs->pc - 1; /* last instruction coded */
  299. if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
  300. fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
  301. fs->iwthabs--; /* undo previous increment */
  302. }
  303. else { /* absolute line information */
  304. lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
  305. fs->nabslineinfo--; /* remove it */
  306. fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
  307. }
  308. }
  309. /*
  310. ** Remove the last instruction created, correcting line information
  311. ** accordingly.
  312. */
  313. static void removelastinstruction (FuncState *fs) {
  314. removelastlineinfo(fs);
  315. fs->pc--;
  316. }
  317. /*
  318. ** Emit instruction 'i', checking for array sizes and saving also its
  319. ** line information. Return 'i' position.
  320. */
  321. int luaK_code (FuncState *fs, Instruction i) {
  322. Proto *f = fs->f;
  323. /* put new instruction in code array */
  324. luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
  325. MAX_INT, "opcodes");
  326. f->code[fs->pc++] = i;
  327. savelineinfo(fs, f, fs->ls->lastline);
  328. return fs->pc - 1; /* index of new instruction */
  329. }
  330. /*
  331. ** Format and emit an 'iABC' instruction. (Assertions check consistency
  332. ** of parameters versus opcode.)
  333. */
  334. int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
  335. lua_assert(getOpMode(o) == iABC);
  336. lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
  337. c <= MAXARG_C && (k & ~1) == 0);
  338. return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
  339. }
  340. /*
  341. ** Format and emit an 'iABx' instruction.
  342. */
  343. int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
  344. lua_assert(getOpMode(o) == iABx);
  345. lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
  346. return luaK_code(fs, CREATE_ABx(o, a, bc));
  347. }
  348. /*
  349. ** Format and emit an 'iAsBx' instruction.
  350. */
  351. int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
  352. unsigned int b = bc + OFFSET_sBx;
  353. lua_assert(getOpMode(o) == iAsBx);
  354. lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
  355. return luaK_code(fs, CREATE_ABx(o, a, b));
  356. }
  357. /*
  358. ** Format and emit an 'isJ' instruction.
  359. */
  360. static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
  361. unsigned int j = sj + OFFSET_sJ;
  362. lua_assert(getOpMode(o) == isJ);
  363. lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
  364. return luaK_code(fs, CREATE_sJ(o, j, k));
  365. }
  366. /*
  367. ** Emit an "extra argument" instruction (format 'iAx')
  368. */
  369. static int codeextraarg (FuncState *fs, int a) {
  370. lua_assert(a <= MAXARG_Ax);
  371. return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
  372. }
  373. /*
  374. ** Emit a "load constant" instruction, using either 'OP_LOADK'
  375. ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
  376. ** instruction with "extra argument".
  377. */
  378. static int luaK_codek (FuncState *fs, int reg, int k) {
  379. if (k <= MAXARG_Bx)
  380. return luaK_codeABx(fs, OP_LOADK, reg, k);
  381. else {
  382. int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
  383. codeextraarg(fs, k);
  384. return p;
  385. }
  386. }
  387. /*
  388. ** Check register-stack level, keeping track of its maximum size
  389. ** in field 'maxstacksize'
  390. */
  391. void luaK_checkstack (FuncState *fs, int n) {
  392. int newstack = fs->freereg + n;
  393. if (newstack > fs->f->maxstacksize) {
  394. if (newstack >= MAXREGS)
  395. luaX_syntaxerror(fs->ls,
  396. "function or expression needs too many registers");
  397. fs->f->maxstacksize = cast_byte(newstack);
  398. }
  399. }
  400. /*
  401. ** Reserve 'n' registers in register stack
  402. */
  403. void luaK_reserveregs (FuncState *fs, int n) {
  404. luaK_checkstack(fs, n);
  405. fs->freereg += n;
  406. }
  407. /*
  408. ** Free register 'reg', if it is neither a constant index nor
  409. ** a local variable.
  410. )
  411. */
  412. static void freereg (FuncState *fs, int reg) {
  413. if (reg >= luaY_nvarstack(fs)) {
  414. fs->freereg--;
  415. lua_assert(reg == fs->freereg);
  416. }
  417. }
  418. /*
  419. ** Free two registers in proper order
  420. */
  421. static void freeregs (FuncState *fs, int r1, int r2) {
  422. if (r1 > r2) {
  423. freereg(fs, r1);
  424. freereg(fs, r2);
  425. }
  426. else {
  427. freereg(fs, r2);
  428. freereg(fs, r1);
  429. }
  430. }
  431. /*
  432. ** Free register used by expression 'e' (if any)
  433. */
  434. static void freeexp (FuncState *fs, expdesc *e) {
  435. if (e->k == VNONRELOC)
  436. freereg(fs, e->u.info);
  437. }
  438. /*
  439. ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
  440. ** order.
  441. */
  442. static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
  443. int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
  444. int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
  445. freeregs(fs, r1, r2);
  446. }
  447. /*
  448. ** Add constant 'v' to prototype's list of constants (field 'k').
  449. ** Use scanner's table to cache position of constants in constant list
  450. ** and try to reuse constants. Because some values should not be used
  451. ** as keys (nil cannot be a key, integer keys can collapse with float
  452. ** keys), the caller must provide a useful 'key' for indexing the cache.
  453. ** Note that all functions share the same table, so entering or exiting
  454. ** a function can make some indices wrong.
  455. */
  456. static int addk (FuncState *fs, TValue *key, TValue *v) {
  457. TValue val;
  458. lua_State *L = fs->ls->L;
  459. Proto *f = fs->f;
  460. const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
  461. int k, oldsize;
  462. if (ttisinteger(idx)) { /* is there an index there? */
  463. k = cast_int(ivalue(idx));
  464. /* correct value? (warning: must distinguish floats from integers!) */
  465. if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
  466. luaV_rawequalobj(&f->k[k], v))
  467. return k; /* reuse index */
  468. }
  469. /* constant not found; create a new entry */
  470. oldsize = f->sizek;
  471. k = fs->nk;
  472. /* numerical value does not need GC barrier;
  473. table has no metatable, so it does not need to invalidate cache */
  474. setivalue(&val, k);
  475. luaH_finishset(L, fs->ls->h, key, idx, &val);
  476. luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
  477. while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
  478. setobj(L, &f->k[k], v);
  479. fs->nk++;
  480. luaC_barrier(L, f, v);
  481. return k;
  482. }
  483. /*
  484. ** Add a string to list of constants and return its index.
  485. */
  486. static int stringK (FuncState *fs, TString *s) {
  487. TValue o;
  488. setsvalue(fs->ls->L, &o, s);
  489. return addk(fs, &o, &o); /* use string itself as key */
  490. }
  491. /*
  492. ** Add an integer to list of constants and return its index.
  493. */
  494. static int luaK_intK (FuncState *fs, lua_Integer n) {
  495. TValue o;
  496. setivalue(&o, n);
  497. return addk(fs, &o, &o); /* use integer itself as key */
  498. }
  499. /*
  500. ** Add a float to list of constants and return its index. Floats
  501. ** with integral values need a different key, to avoid collision
  502. ** with actual integers. To that, we add to the number its smaller
  503. ** power-of-two fraction that is still significant in its scale.
  504. ** For doubles, that would be 1/2^52.
  505. ** (This method is not bulletproof: there may be another float
  506. ** with that value, and for floats larger than 2^53 the result is
  507. ** still an integer. At worst, this only wastes an entry with
  508. ** a duplicate.)
  509. */
  510. static int luaK_numberK (FuncState *fs, lua_Number r) {
  511. TValue o;
  512. lua_Integer ik;
  513. setfltvalue(&o, r);
  514. if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
  515. return addk(fs, &o, &o); /* use number itself as key */
  516. else { /* must build an alternative key */
  517. const int nbm = l_floatatt(MANT_DIG);
  518. const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
  519. const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
  520. TValue kv;
  521. setfltvalue(&kv, k);
  522. /* result is not an integral value, unless value is too large */
  523. lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
  524. l_mathop(fabs)(r) >= l_mathop(1e6));
  525. return addk(fs, &kv, &o);
  526. }
  527. }
  528. /*
  529. ** Add a false to list of constants and return its index.
  530. */
  531. static int boolF (FuncState *fs) {
  532. TValue o;
  533. setbfvalue(&o);
  534. return addk(fs, &o, &o); /* use boolean itself as key */
  535. }
  536. /*
  537. ** Add a true to list of constants and return its index.
  538. */
  539. static int boolT (FuncState *fs) {
  540. TValue o;
  541. setbtvalue(&o);
  542. return addk(fs, &o, &o); /* use boolean itself as key */
  543. }
  544. /*
  545. ** Add nil to list of constants and return its index.
  546. */
  547. static int nilK (FuncState *fs) {
  548. TValue k, v;
  549. setnilvalue(&v);
  550. /* cannot use nil as key; instead use table itself to represent nil */
  551. sethvalue(fs->ls->L, &k, fs->ls->h);
  552. return addk(fs, &k, &v);
  553. }
  554. /*
  555. ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
  556. ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
  557. ** overflows in the hidden addition inside 'int2sC'.
  558. */
  559. static int fitsC (lua_Integer i) {
  560. return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
  561. }
  562. /*
  563. ** Check whether 'i' can be stored in an 'sBx' operand.
  564. */
  565. static int fitsBx (lua_Integer i) {
  566. return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
  567. }
  568. void luaK_int (FuncState *fs, int reg, lua_Integer i) {
  569. if (fitsBx(i))
  570. luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
  571. else
  572. luaK_codek(fs, reg, luaK_intK(fs, i));
  573. }
  574. static void luaK_float (FuncState *fs, int reg, lua_Number f) {
  575. lua_Integer fi;
  576. if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
  577. luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
  578. else
  579. luaK_codek(fs, reg, luaK_numberK(fs, f));
  580. }
  581. /*
  582. ** Convert a constant in 'v' into an expression description 'e'
  583. */
  584. static void const2exp (TValue *v, expdesc *e) {
  585. switch (ttypetag(v)) {
  586. case LUA_VNUMINT:
  587. e->k = VKINT; e->u.ival = ivalue(v);
  588. break;
  589. case LUA_VNUMFLT:
  590. e->k = VKFLT; e->u.nval = fltvalue(v);
  591. break;
  592. case LUA_VFALSE:
  593. e->k = VFALSE;
  594. break;
  595. case LUA_VTRUE:
  596. e->k = VTRUE;
  597. break;
  598. case LUA_VNIL:
  599. e->k = VNIL;
  600. break;
  601. case LUA_VSHRSTR: case LUA_VLNGSTR:
  602. e->k = VKSTR; e->u.strval = tsvalue(v);
  603. break;
  604. default: lua_assert(0);
  605. }
  606. }
  607. /*
  608. ** Fix an expression to return the number of results 'nresults'.
  609. ** 'e' must be a multi-ret expression (function call or vararg).
  610. */
  611. void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
  612. Instruction *pc = &getinstruction(fs, e);
  613. if (e->k == VCALL) /* expression is an open function call? */
  614. SETARG_C(*pc, nresults + 1);
  615. else {
  616. lua_assert(e->k == VVARARG);
  617. SETARG_C(*pc, nresults + 1);
  618. SETARG_A(*pc, fs->freereg);
  619. luaK_reserveregs(fs, 1);
  620. }
  621. }
  622. /*
  623. ** Convert a VKSTR to a VK
  624. */
  625. static void str2K (FuncState *fs, expdesc *e) {
  626. lua_assert(e->k == VKSTR);
  627. e->u.info = stringK(fs, e->u.strval);
  628. e->k = VK;
  629. }
  630. /*
  631. ** Fix an expression to return one result.
  632. ** If expression is not a multi-ret expression (function call or
  633. ** vararg), it already returns one result, so nothing needs to be done.
  634. ** Function calls become VNONRELOC expressions (as its result comes
  635. ** fixed in the base register of the call), while vararg expressions
  636. ** become VRELOC (as OP_VARARG puts its results where it wants).
  637. ** (Calls are created returning one result, so that does not need
  638. ** to be fixed.)
  639. */
  640. void luaK_setoneret (FuncState *fs, expdesc *e) {
  641. if (e->k == VCALL) { /* expression is an open function call? */
  642. /* already returns 1 value */
  643. lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
  644. e->k = VNONRELOC; /* result has fixed position */
  645. e->u.info = GETARG_A(getinstruction(fs, e));
  646. }
  647. else if (e->k == VVARARG) {
  648. SETARG_C(getinstruction(fs, e), 2);
  649. e->k = VRELOC; /* can relocate its simple result */
  650. }
  651. }
  652. /*
  653. ** Ensure that expression 'e' is not a variable (nor a <const>).
  654. ** (Expression still may have jump lists.)
  655. */
  656. void luaK_dischargevars (FuncState *fs, expdesc *e) {
  657. switch (e->k) {
  658. case VCONST: {
  659. const2exp(const2val(fs, e), e);
  660. break;
  661. }
  662. case VLOCAL: { /* already in a register */
  663. e->u.info = e->u.var.ridx;
  664. e->k = VNONRELOC; /* becomes a non-relocatable value */
  665. break;
  666. }
  667. case VUPVAL: { /* move value to some (pending) register */
  668. e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
  669. e->k = VRELOC;
  670. break;
  671. }
  672. case VINDEXUP: {
  673. e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
  674. e->k = VRELOC;
  675. break;
  676. }
  677. case VINDEXI: {
  678. freereg(fs, e->u.ind.t);
  679. e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
  680. e->k = VRELOC;
  681. break;
  682. }
  683. case VINDEXSTR: {
  684. freereg(fs, e->u.ind.t);
  685. e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
  686. e->k = VRELOC;
  687. break;
  688. }
  689. case VINDEXED: {
  690. freeregs(fs, e->u.ind.t, e->u.ind.idx);
  691. e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
  692. e->k = VRELOC;
  693. break;
  694. }
  695. case VVARARG: case VCALL: {
  696. luaK_setoneret(fs, e);
  697. break;
  698. }
  699. default: break; /* there is one value available (somewhere) */
  700. }
  701. }
  702. /*
  703. ** Ensure expression value is in register 'reg', making 'e' a
  704. ** non-relocatable expression.
  705. ** (Expression still may have jump lists.)
  706. */
  707. static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
  708. luaK_dischargevars(fs, e);
  709. switch (e->k) {
  710. case VNIL: {
  711. luaK_nil(fs, reg, 1);
  712. break;
  713. }
  714. case VFALSE: {
  715. luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
  716. break;
  717. }
  718. case VTRUE: {
  719. luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
  720. break;
  721. }
  722. case VKSTR: {
  723. str2K(fs, e);
  724. } /* FALLTHROUGH */
  725. case VK: {
  726. luaK_codek(fs, reg, e->u.info);
  727. break;
  728. }
  729. case VKFLT: {
  730. luaK_float(fs, reg, e->u.nval);
  731. break;
  732. }
  733. case VKINT: {
  734. luaK_int(fs, reg, e->u.ival);
  735. break;
  736. }
  737. case VRELOC: {
  738. Instruction *pc = &getinstruction(fs, e);
  739. SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
  740. break;
  741. }
  742. case VNONRELOC: {
  743. if (reg != e->u.info)
  744. luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
  745. break;
  746. }
  747. default: {
  748. lua_assert(e->k == VJMP);
  749. return; /* nothing to do... */
  750. }
  751. }
  752. e->u.info = reg;
  753. e->k = VNONRELOC;
  754. }
  755. /*
  756. ** Ensure expression value is in a register, making 'e' a
  757. ** non-relocatable expression.
  758. ** (Expression still may have jump lists.)
  759. */
  760. static void discharge2anyreg (FuncState *fs, expdesc *e) {
  761. if (e->k != VNONRELOC) { /* no fixed register yet? */
  762. luaK_reserveregs(fs, 1); /* get a register */
  763. discharge2reg(fs, e, fs->freereg-1); /* put value there */
  764. }
  765. }
  766. static int code_loadbool (FuncState *fs, int A, OpCode op) {
  767. luaK_getlabel(fs); /* those instructions may be jump targets */
  768. return luaK_codeABC(fs, op, A, 0, 0);
  769. }
  770. /*
  771. ** check whether list has any jump that do not produce a value
  772. ** or produce an inverted value
  773. */
  774. static int need_value (FuncState *fs, int list) {
  775. for (; list != NO_JUMP; list = getjump(fs, list)) {
  776. Instruction i = *getjumpcontrol(fs, list);
  777. if (GET_OPCODE(i) != OP_TESTSET) return 1;
  778. }
  779. return 0; /* not found */
  780. }
  781. /*
  782. ** Ensures final expression result (which includes results from its
  783. ** jump lists) is in register 'reg'.
  784. ** If expression has jumps, need to patch these jumps either to
  785. ** its final position or to "load" instructions (for those tests
  786. ** that do not produce values).
  787. */
  788. static void exp2reg (FuncState *fs, expdesc *e, int reg) {
  789. discharge2reg(fs, e, reg);
  790. if (e->k == VJMP) /* expression itself is a test? */
  791. luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
  792. if (hasjumps(e)) {
  793. int final; /* position after whole expression */
  794. int p_f = NO_JUMP; /* position of an eventual LOAD false */
  795. int p_t = NO_JUMP; /* position of an eventual LOAD true */
  796. if (need_value(fs, e->t) || need_value(fs, e->f)) {
  797. int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
  798. p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
  799. p_t = code_loadbool(fs, reg, OP_LOADTRUE);
  800. /* jump around these booleans if 'e' is not a test */
  801. luaK_patchtohere(fs, fj);
  802. }
  803. final = luaK_getlabel(fs);
  804. patchlistaux(fs, e->f, final, reg, p_f);
  805. patchlistaux(fs, e->t, final, reg, p_t);
  806. }
  807. e->f = e->t = NO_JUMP;
  808. e->u.info = reg;
  809. e->k = VNONRELOC;
  810. }
  811. /*
  812. ** Ensures final expression result is in next available register.
  813. */
  814. void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
  815. luaK_dischargevars(fs, e);
  816. freeexp(fs, e);
  817. luaK_reserveregs(fs, 1);
  818. exp2reg(fs, e, fs->freereg - 1);
  819. }
  820. /*
  821. ** Ensures final expression result is in some (any) register
  822. ** and return that register.
  823. */
  824. int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
  825. luaK_dischargevars(fs, e);
  826. if (e->k == VNONRELOC) { /* expression already has a register? */
  827. if (!hasjumps(e)) /* no jumps? */
  828. return e->u.info; /* result is already in a register */
  829. if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
  830. exp2reg(fs, e, e->u.info); /* put final result in it */
  831. return e->u.info;
  832. }
  833. /* else expression has jumps and cannot change its register
  834. to hold the jump values, because it is a local variable.
  835. Go through to the default case. */
  836. }
  837. luaK_exp2nextreg(fs, e); /* default: use next available register */
  838. return e->u.info;
  839. }
  840. /*
  841. ** Ensures final expression result is either in a register
  842. ** or in an upvalue.
  843. */
  844. void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
  845. if (e->k != VUPVAL || hasjumps(e))
  846. luaK_exp2anyreg(fs, e);
  847. }
  848. /*
  849. ** Ensures final expression result is either in a register
  850. ** or it is a constant.
  851. */
  852. void luaK_exp2val (FuncState *fs, expdesc *e) {
  853. if (hasjumps(e))
  854. luaK_exp2anyreg(fs, e);
  855. else
  856. luaK_dischargevars(fs, e);
  857. }
  858. /*
  859. ** Try to make 'e' a K expression with an index in the range of R/K
  860. ** indices. Return true iff succeeded.
  861. */
  862. static int luaK_exp2K (FuncState *fs, expdesc *e) {
  863. if (!hasjumps(e)) {
  864. int info;
  865. switch (e->k) { /* move constants to 'k' */
  866. case VTRUE: info = boolT(fs); break;
  867. case VFALSE: info = boolF(fs); break;
  868. case VNIL: info = nilK(fs); break;
  869. case VKINT: info = luaK_intK(fs, e->u.ival); break;
  870. case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
  871. case VKSTR: info = stringK(fs, e->u.strval); break;
  872. case VK: info = e->u.info; break;
  873. default: return 0; /* not a constant */
  874. }
  875. if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
  876. e->k = VK; /* make expression a 'K' expression */
  877. e->u.info = info;
  878. return 1;
  879. }
  880. }
  881. /* else, expression doesn't fit; leave it unchanged */
  882. return 0;
  883. }
  884. /*
  885. ** Ensures final expression result is in a valid R/K index
  886. ** (that is, it is either in a register or in 'k' with an index
  887. ** in the range of R/K indices).
  888. ** Returns 1 iff expression is K.
  889. */
  890. int luaK_exp2RK (FuncState *fs, expdesc *e) {
  891. if (luaK_exp2K(fs, e))
  892. return 1;
  893. else { /* not a constant in the right range: put it in a register */
  894. luaK_exp2anyreg(fs, e);
  895. return 0;
  896. }
  897. }
  898. static void codeABRK (FuncState *fs, OpCode o, int a, int b,
  899. expdesc *ec) {
  900. int k = luaK_exp2RK(fs, ec);
  901. luaK_codeABCk(fs, o, a, b, ec->u.info, k);
  902. }
  903. /*
  904. ** Generate code to store result of expression 'ex' into variable 'var'.
  905. */
  906. void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
  907. switch (var->k) {
  908. case VLOCAL: {
  909. freeexp(fs, ex);
  910. exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
  911. return;
  912. }
  913. case VUPVAL: {
  914. int e = luaK_exp2anyreg(fs, ex);
  915. luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
  916. break;
  917. }
  918. case VINDEXUP: {
  919. codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
  920. break;
  921. }
  922. case VINDEXI: {
  923. codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
  924. break;
  925. }
  926. case VINDEXSTR: {
  927. codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
  928. break;
  929. }
  930. case VINDEXED: {
  931. codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
  932. break;
  933. }
  934. default: lua_assert(0); /* invalid var kind to store */
  935. }
  936. freeexp(fs, ex);
  937. }
  938. /*
  939. ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
  940. */
  941. void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
  942. int ereg;
  943. luaK_exp2anyreg(fs, e);
  944. ereg = e->u.info; /* register where 'e' was placed */
  945. freeexp(fs, e);
  946. e->u.info = fs->freereg; /* base register for op_self */
  947. e->k = VNONRELOC; /* self expression has a fixed register */
  948. luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
  949. codeABRK(fs, OP_SELF, e->u.info, ereg, key);
  950. freeexp(fs, key);
  951. }
  952. /*
  953. ** Negate condition 'e' (where 'e' is a comparison).
  954. */
  955. static void negatecondition (FuncState *fs, expdesc *e) {
  956. Instruction *pc = getjumpcontrol(fs, e->u.info);
  957. lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
  958. GET_OPCODE(*pc) != OP_TEST);
  959. SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
  960. }
  961. /*
  962. ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
  963. ** is true, code will jump if 'e' is true.) Return jump position.
  964. ** Optimize when 'e' is 'not' something, inverting the condition
  965. ** and removing the 'not'.
  966. */
  967. static int jumponcond (FuncState *fs, expdesc *e, int cond) {
  968. if (e->k == VRELOC) {
  969. Instruction ie = getinstruction(fs, e);
  970. if (GET_OPCODE(ie) == OP_NOT) {
  971. removelastinstruction(fs); /* remove previous OP_NOT */
  972. return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
  973. }
  974. /* else go through */
  975. }
  976. discharge2anyreg(fs, e);
  977. freeexp(fs, e);
  978. return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
  979. }
  980. /*
  981. ** Emit code to go through if 'e' is true, jump otherwise.
  982. */
  983. void luaK_goiftrue (FuncState *fs, expdesc *e) {
  984. int pc; /* pc of new jump */
  985. luaK_dischargevars(fs, e);
  986. switch (e->k) {
  987. case VJMP: { /* condition? */
  988. negatecondition(fs, e); /* jump when it is false */
  989. pc = e->u.info; /* save jump position */
  990. break;
  991. }
  992. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  993. pc = NO_JUMP; /* always true; do nothing */
  994. break;
  995. }
  996. default: {
  997. pc = jumponcond(fs, e, 0); /* jump when false */
  998. break;
  999. }
  1000. }
  1001. luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
  1002. luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
  1003. e->t = NO_JUMP;
  1004. }
  1005. /*
  1006. ** Emit code to go through if 'e' is false, jump otherwise.
  1007. */
  1008. void luaK_goiffalse (FuncState *fs, expdesc *e) {
  1009. int pc; /* pc of new jump */
  1010. luaK_dischargevars(fs, e);
  1011. switch (e->k) {
  1012. case VJMP: {
  1013. pc = e->u.info; /* already jump if true */
  1014. break;
  1015. }
  1016. case VNIL: case VFALSE: {
  1017. pc = NO_JUMP; /* always false; do nothing */
  1018. break;
  1019. }
  1020. default: {
  1021. pc = jumponcond(fs, e, 1); /* jump if true */
  1022. break;
  1023. }
  1024. }
  1025. luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
  1026. luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
  1027. e->f = NO_JUMP;
  1028. }
  1029. /*
  1030. ** Code 'not e', doing constant folding.
  1031. */
  1032. static void codenot (FuncState *fs, expdesc *e) {
  1033. switch (e->k) {
  1034. case VNIL: case VFALSE: {
  1035. e->k = VTRUE; /* true == not nil == not false */
  1036. break;
  1037. }
  1038. case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
  1039. e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
  1040. break;
  1041. }
  1042. case VJMP: {
  1043. negatecondition(fs, e);
  1044. break;
  1045. }
  1046. case VRELOC:
  1047. case VNONRELOC: {
  1048. discharge2anyreg(fs, e);
  1049. freeexp(fs, e);
  1050. e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
  1051. e->k = VRELOC;
  1052. break;
  1053. }
  1054. default: lua_assert(0); /* cannot happen */
  1055. }
  1056. /* interchange true and false lists */
  1057. { int temp = e->f; e->f = e->t; e->t = temp; }
  1058. removevalues(fs, e->f); /* values are useless when negated */
  1059. removevalues(fs, e->t);
  1060. }
  1061. /*
  1062. ** Check whether expression 'e' is a small literal string
  1063. */
  1064. static int isKstr (FuncState *fs, expdesc *e) {
  1065. return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
  1066. ttisshrstring(&fs->f->k[e->u.info]));
  1067. }
  1068. /*
  1069. ** Check whether expression 'e' is a literal integer.
  1070. */
  1071. int luaK_isKint (expdesc *e) {
  1072. return (e->k == VKINT && !hasjumps(e));
  1073. }
  1074. /*
  1075. ** Check whether expression 'e' is a literal integer in
  1076. ** proper range to fit in register C
  1077. */
  1078. static int isCint (expdesc *e) {
  1079. return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
  1080. }
  1081. /*
  1082. ** Check whether expression 'e' is a literal integer in
  1083. ** proper range to fit in register sC
  1084. */
  1085. static int isSCint (expdesc *e) {
  1086. return luaK_isKint(e) && fitsC(e->u.ival);
  1087. }
  1088. /*
  1089. ** Check whether expression 'e' is a literal integer or float in
  1090. ** proper range to fit in a register (sB or sC).
  1091. */
  1092. static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
  1093. lua_Integer i;
  1094. if (e->k == VKINT)
  1095. i = e->u.ival;
  1096. else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
  1097. *isfloat = 1;
  1098. else
  1099. return 0; /* not a number */
  1100. if (!hasjumps(e) && fitsC(i)) {
  1101. *pi = int2sC(cast_int(i));
  1102. return 1;
  1103. }
  1104. else
  1105. return 0;
  1106. }
  1107. /*
  1108. ** Create expression 't[k]'. 't' must have its final result already in a
  1109. ** register or upvalue. Upvalues can only be indexed by literal strings.
  1110. ** Keys can be literal strings in the constant table or arbitrary
  1111. ** values in registers.
  1112. */
  1113. void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
  1114. if (k->k == VKSTR)
  1115. str2K(fs, k);
  1116. lua_assert(!hasjumps(t) &&
  1117. (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
  1118. if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
  1119. luaK_exp2anyreg(fs, t); /* put it in a register */
  1120. if (t->k == VUPVAL) {
  1121. t->u.ind.t = t->u.info; /* upvalue index */
  1122. t->u.ind.idx = k->u.info; /* literal string */
  1123. t->k = VINDEXUP;
  1124. }
  1125. else {
  1126. /* register index of the table */
  1127. t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
  1128. if (isKstr(fs, k)) {
  1129. t->u.ind.idx = k->u.info; /* literal string */
  1130. t->k = VINDEXSTR;
  1131. }
  1132. else if (isCint(k)) {
  1133. t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
  1134. t->k = VINDEXI;
  1135. }
  1136. else {
  1137. t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
  1138. t->k = VINDEXED;
  1139. }
  1140. }
  1141. }
  1142. /*
  1143. ** Return false if folding can raise an error.
  1144. ** Bitwise operations need operands convertible to integers; division
  1145. ** operations cannot have 0 as divisor.
  1146. */
  1147. static int validop (int op, TValue *v1, TValue *v2) {
  1148. switch (op) {
  1149. case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
  1150. case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
  1151. lua_Integer i;
  1152. return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
  1153. luaV_tointegerns(v2, &i, LUA_FLOORN2I));
  1154. }
  1155. case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
  1156. return (nvalue(v2) != 0);
  1157. default: return 1; /* everything else is valid */
  1158. }
  1159. }
  1160. /*
  1161. ** Try to "constant-fold" an operation; return 1 iff successful.
  1162. ** (In this case, 'e1' has the final result.)
  1163. */
  1164. static int constfolding (FuncState *fs, int op, expdesc *e1,
  1165. const expdesc *e2) {
  1166. TValue v1, v2, res;
  1167. if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
  1168. return 0; /* non-numeric operands or not safe to fold */
  1169. luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
  1170. if (ttisinteger(&res)) {
  1171. e1->k = VKINT;
  1172. e1->u.ival = ivalue(&res);
  1173. }
  1174. else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
  1175. lua_Number n = fltvalue(&res);
  1176. if (luai_numisnan(n) || n == 0)
  1177. return 0;
  1178. e1->k = VKFLT;
  1179. e1->u.nval = n;
  1180. }
  1181. return 1;
  1182. }
  1183. /*
  1184. ** Emit code for unary expressions that "produce values"
  1185. ** (everything but 'not').
  1186. ** Expression to produce final result will be encoded in 'e'.
  1187. */
  1188. static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
  1189. int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
  1190. freeexp(fs, e);
  1191. e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
  1192. e->k = VRELOC; /* all those operations are relocatable */
  1193. luaK_fixline(fs, line);
  1194. }
  1195. /*
  1196. ** Emit code for binary expressions that "produce values"
  1197. ** (everything but logical operators 'and'/'or' and comparison
  1198. ** operators).
  1199. ** Expression to produce final result will be encoded in 'e1'.
  1200. */
  1201. static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
  1202. OpCode op, int v2, int flip, int line,
  1203. OpCode mmop, TMS event) {
  1204. int v1 = luaK_exp2anyreg(fs, e1);
  1205. int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
  1206. freeexps(fs, e1, e2);
  1207. e1->u.info = pc;
  1208. e1->k = VRELOC; /* all those operations are relocatable */
  1209. luaK_fixline(fs, line);
  1210. luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
  1211. luaK_fixline(fs, line);
  1212. }
  1213. /*
  1214. ** Emit code for binary expressions that "produce values" over
  1215. ** two registers.
  1216. */
  1217. static void codebinexpval (FuncState *fs, OpCode op,
  1218. expdesc *e1, expdesc *e2, int line) {
  1219. int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */
  1220. lua_assert(OP_ADD <= op && op <= OP_SHR);
  1221. finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
  1222. cast(TMS, (op - OP_ADD) + TM_ADD));
  1223. }
  1224. /*
  1225. ** Code binary operators with immediate operands.
  1226. */
  1227. static void codebini (FuncState *fs, OpCode op,
  1228. expdesc *e1, expdesc *e2, int flip, int line,
  1229. TMS event) {
  1230. int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
  1231. lua_assert(e2->k == VKINT);
  1232. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
  1233. }
  1234. /* Try to code a binary operator negating its second operand.
  1235. ** For the metamethod, 2nd operand must keep its original value.
  1236. */
  1237. static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
  1238. OpCode op, int line, TMS event) {
  1239. if (!luaK_isKint(e2))
  1240. return 0; /* not an integer constant */
  1241. else {
  1242. lua_Integer i2 = e2->u.ival;
  1243. if (!(fitsC(i2) && fitsC(-i2)))
  1244. return 0; /* not in the proper range */
  1245. else { /* operating a small integer constant */
  1246. int v2 = cast_int(i2);
  1247. finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
  1248. /* correct metamethod argument */
  1249. SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
  1250. return 1; /* successfully coded */
  1251. }
  1252. }
  1253. }
  1254. static void swapexps (expdesc *e1, expdesc *e2) {
  1255. expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
  1256. }
  1257. /*
  1258. ** Code arithmetic operators ('+', '-', ...). If second operand is a
  1259. ** constant in the proper range, use variant opcodes with K operands.
  1260. */
  1261. static void codearith (FuncState *fs, BinOpr opr,
  1262. expdesc *e1, expdesc *e2, int flip, int line) {
  1263. TMS event = cast(TMS, opr + TM_ADD);
  1264. if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */
  1265. int v2 = e2->u.info; /* K index */
  1266. OpCode op = cast(OpCode, opr + OP_ADDK);
  1267. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
  1268. }
  1269. else { /* 'e2' is neither an immediate nor a K operand */
  1270. OpCode op = cast(OpCode, opr + OP_ADD);
  1271. if (flip)
  1272. swapexps(e1, e2); /* back to original order */
  1273. codebinexpval(fs, op, e1, e2, line); /* use standard operators */
  1274. }
  1275. }
  1276. /*
  1277. ** Code commutative operators ('+', '*'). If first operand is a
  1278. ** numeric constant, change order of operands to try to use an
  1279. ** immediate or K operator.
  1280. */
  1281. static void codecommutative (FuncState *fs, BinOpr op,
  1282. expdesc *e1, expdesc *e2, int line) {
  1283. int flip = 0;
  1284. if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
  1285. swapexps(e1, e2); /* change order */
  1286. flip = 1;
  1287. }
  1288. if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
  1289. codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
  1290. else
  1291. codearith(fs, op, e1, e2, flip, line);
  1292. }
  1293. /*
  1294. ** Code bitwise operations; they are all associative, so the function
  1295. ** tries to put an integer constant as the 2nd operand (a K operand).
  1296. */
  1297. static void codebitwise (FuncState *fs, BinOpr opr,
  1298. expdesc *e1, expdesc *e2, int line) {
  1299. int flip = 0;
  1300. int v2;
  1301. OpCode op;
  1302. if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
  1303. swapexps(e1, e2); /* 'e2' will be the constant operand */
  1304. flip = 1;
  1305. }
  1306. else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */
  1307. op = cast(OpCode, opr + OP_ADD);
  1308. codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */
  1309. return;
  1310. }
  1311. v2 = e2->u.info; /* index in K array */
  1312. op = cast(OpCode, opr + OP_ADDK);
  1313. lua_assert(ttisinteger(&fs->f->k[v2]));
  1314. finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
  1315. cast(TMS, opr + TM_ADD));
  1316. }
  1317. /*
  1318. ** Emit code for order comparisons. When using an immediate operand,
  1319. ** 'isfloat' tells whether the original value was a float.
  1320. */
  1321. static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
  1322. int r1, r2;
  1323. int im;
  1324. int isfloat = 0;
  1325. if (isSCnumber(e2, &im, &isfloat)) {
  1326. /* use immediate operand */
  1327. r1 = luaK_exp2anyreg(fs, e1);
  1328. r2 = im;
  1329. op = cast(OpCode, (op - OP_LT) + OP_LTI);
  1330. }
  1331. else if (isSCnumber(e1, &im, &isfloat)) {
  1332. /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
  1333. r1 = luaK_exp2anyreg(fs, e2);
  1334. r2 = im;
  1335. op = (op == OP_LT) ? OP_GTI : OP_GEI;
  1336. }
  1337. else { /* regular case, compare two registers */
  1338. r1 = luaK_exp2anyreg(fs, e1);
  1339. r2 = luaK_exp2anyreg(fs, e2);
  1340. }
  1341. freeexps(fs, e1, e2);
  1342. e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
  1343. e1->k = VJMP;
  1344. }
  1345. /*
  1346. ** Emit code for equality comparisons ('==', '~=').
  1347. ** 'e1' was already put as RK by 'luaK_infix'.
  1348. */
  1349. static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
  1350. int r1, r2;
  1351. int im;
  1352. int isfloat = 0; /* not needed here, but kept for symmetry */
  1353. OpCode op;
  1354. if (e1->k != VNONRELOC) {
  1355. lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
  1356. swapexps(e1, e2);
  1357. }
  1358. r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
  1359. if (isSCnumber(e2, &im, &isfloat)) {
  1360. op = OP_EQI;
  1361. r2 = im; /* immediate operand */
  1362. }
  1363. else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */
  1364. op = OP_EQK;
  1365. r2 = e2->u.info; /* constant index */
  1366. }
  1367. else {
  1368. op = OP_EQ; /* will compare two registers */
  1369. r2 = luaK_exp2anyreg(fs, e2);
  1370. }
  1371. freeexps(fs, e1, e2);
  1372. e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
  1373. e1->k = VJMP;
  1374. }
  1375. /*
  1376. ** Apply prefix operation 'op' to expression 'e'.
  1377. */
  1378. void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
  1379. static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
  1380. luaK_dischargevars(fs, e);
  1381. switch (op) {
  1382. case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
  1383. if (constfolding(fs, op + LUA_OPUNM, e, &ef))
  1384. break;
  1385. /* else */ /* FALLTHROUGH */
  1386. case OPR_LEN:
  1387. codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
  1388. break;
  1389. case OPR_NOT: codenot(fs, e); break;
  1390. default: lua_assert(0);
  1391. }
  1392. }
  1393. /*
  1394. ** Process 1st operand 'v' of binary operation 'op' before reading
  1395. ** 2nd operand.
  1396. */
  1397. void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
  1398. luaK_dischargevars(fs, v);
  1399. switch (op) {
  1400. case OPR_AND: {
  1401. luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
  1402. break;
  1403. }
  1404. case OPR_OR: {
  1405. luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
  1406. break;
  1407. }
  1408. case OPR_CONCAT: {
  1409. luaK_exp2nextreg(fs, v); /* operand must be on the stack */
  1410. break;
  1411. }
  1412. case OPR_ADD: case OPR_SUB:
  1413. case OPR_MUL: case OPR_DIV: case OPR_IDIV:
  1414. case OPR_MOD: case OPR_POW:
  1415. case OPR_BAND: case OPR_BOR: case OPR_BXOR:
  1416. case OPR_SHL: case OPR_SHR: {
  1417. if (!tonumeral(v, NULL))
  1418. luaK_exp2anyreg(fs, v);
  1419. /* else keep numeral, which may be folded with 2nd operand */
  1420. break;
  1421. }
  1422. case OPR_EQ: case OPR_NE: {
  1423. if (!tonumeral(v, NULL))
  1424. luaK_exp2RK(fs, v);
  1425. /* else keep numeral, which may be an immediate operand */
  1426. break;
  1427. }
  1428. case OPR_LT: case OPR_LE:
  1429. case OPR_GT: case OPR_GE: {
  1430. int dummy, dummy2;
  1431. if (!isSCnumber(v, &dummy, &dummy2))
  1432. luaK_exp2anyreg(fs, v);
  1433. /* else keep numeral, which may be an immediate operand */
  1434. break;
  1435. }
  1436. default: lua_assert(0);
  1437. }
  1438. }
  1439. /*
  1440. ** Create code for '(e1 .. e2)'.
  1441. ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
  1442. ** because concatenation is right associative), merge both CONCATs.
  1443. */
  1444. static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
  1445. Instruction *ie2 = previousinstruction(fs);
  1446. if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
  1447. int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
  1448. lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
  1449. freeexp(fs, e2);
  1450. SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
  1451. SETARG_B(*ie2, n + 1); /* will concatenate one more element */
  1452. }
  1453. else { /* 'e2' is not a concatenation */
  1454. luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
  1455. freeexp(fs, e2);
  1456. luaK_fixline(fs, line);
  1457. }
  1458. }
  1459. /*
  1460. ** Finalize code for binary operation, after reading 2nd operand.
  1461. */
  1462. void luaK_posfix (FuncState *fs, BinOpr opr,
  1463. expdesc *e1, expdesc *e2, int line) {
  1464. luaK_dischargevars(fs, e2);
  1465. if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
  1466. return; /* done by folding */
  1467. switch (opr) {
  1468. case OPR_AND: {
  1469. lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
  1470. luaK_concat(fs, &e2->f, e1->f);
  1471. *e1 = *e2;
  1472. break;
  1473. }
  1474. case OPR_OR: {
  1475. lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
  1476. luaK_concat(fs, &e2->t, e1->t);
  1477. *e1 = *e2;
  1478. break;
  1479. }
  1480. case OPR_CONCAT: { /* e1 .. e2 */
  1481. luaK_exp2nextreg(fs, e2);
  1482. codeconcat(fs, e1, e2, line);
  1483. break;
  1484. }
  1485. case OPR_ADD: case OPR_MUL: {
  1486. codecommutative(fs, opr, e1, e2, line);
  1487. break;
  1488. }
  1489. case OPR_SUB: {
  1490. if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
  1491. break; /* coded as (r1 + -I) */
  1492. /* ELSE */
  1493. } /* FALLTHROUGH */
  1494. case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
  1495. codearith(fs, opr, e1, e2, 0, line);
  1496. break;
  1497. }
  1498. case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
  1499. codebitwise(fs, opr, e1, e2, line);
  1500. break;
  1501. }
  1502. case OPR_SHL: {
  1503. if (isSCint(e1)) {
  1504. swapexps(e1, e2);
  1505. codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
  1506. }
  1507. else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
  1508. /* coded as (r1 >> -I) */;
  1509. }
  1510. else /* regular case (two registers) */
  1511. codebinexpval(fs, OP_SHL, e1, e2, line);
  1512. break;
  1513. }
  1514. case OPR_SHR: {
  1515. if (isSCint(e2))
  1516. codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
  1517. else /* regular case (two registers) */
  1518. codebinexpval(fs, OP_SHR, e1, e2, line);
  1519. break;
  1520. }
  1521. case OPR_EQ: case OPR_NE: {
  1522. codeeq(fs, opr, e1, e2);
  1523. break;
  1524. }
  1525. case OPR_LT: case OPR_LE: {
  1526. OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
  1527. codeorder(fs, op, e1, e2);
  1528. break;
  1529. }
  1530. case OPR_GT: case OPR_GE: {
  1531. /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
  1532. OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
  1533. swapexps(e1, e2);
  1534. codeorder(fs, op, e1, e2);
  1535. break;
  1536. }
  1537. default: lua_assert(0);
  1538. }
  1539. }
  1540. /*
  1541. ** Change line information associated with current position, by removing
  1542. ** previous info and adding it again with new line.
  1543. */
  1544. void luaK_fixline (FuncState *fs, int line) {
  1545. removelastlineinfo(fs);
  1546. savelineinfo(fs, fs->f, line);
  1547. }
  1548. void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
  1549. Instruction *inst = &fs->f->code[pc];
  1550. int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
  1551. int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
  1552. int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
  1553. int k = (extra > 0); /* true iff needs extra argument */
  1554. *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
  1555. *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
  1556. }
  1557. /*
  1558. ** Emit a SETLIST instruction.
  1559. ** 'base' is register that keeps table;
  1560. ** 'nelems' is #table plus those to be stored now;
  1561. ** 'tostore' is number of values (in registers 'base + 1',...) to add to
  1562. ** table (or LUA_MULTRET to add up to stack top).
  1563. */
  1564. void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
  1565. lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
  1566. if (tostore == LUA_MULTRET)
  1567. tostore = 0;
  1568. if (nelems <= MAXARG_C)
  1569. luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
  1570. else {
  1571. int extra = nelems / (MAXARG_C + 1);
  1572. nelems %= (MAXARG_C + 1);
  1573. luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
  1574. codeextraarg(fs, extra);
  1575. }
  1576. fs->freereg = base + 1; /* free registers with list values */
  1577. }
  1578. /*
  1579. ** return the final target of a jump (skipping jumps to jumps)
  1580. */
  1581. static int finaltarget (Instruction *code, int i) {
  1582. int count;
  1583. for (count = 0; count < 100; count++) { /* avoid infinite loops */
  1584. Instruction pc = code[i];
  1585. if (GET_OPCODE(pc) != OP_JMP)
  1586. break;
  1587. else
  1588. i += GETARG_sJ(pc) + 1;
  1589. }
  1590. return i;
  1591. }
  1592. /*
  1593. ** Do a final pass over the code of a function, doing small peephole
  1594. ** optimizations and adjustments.
  1595. */
  1596. void luaK_finish (FuncState *fs) {
  1597. int i;
  1598. Proto *p = fs->f;
  1599. for (i = 0; i < fs->pc; i++) {
  1600. Instruction *pc = &p->code[i];
  1601. lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
  1602. switch (GET_OPCODE(*pc)) {
  1603. case OP_RETURN0: case OP_RETURN1: {
  1604. if (!(fs->needclose || p->is_vararg))
  1605. break; /* no extra work */
  1606. /* else use OP_RETURN to do the extra work */
  1607. SET_OPCODE(*pc, OP_RETURN);
  1608. } /* FALLTHROUGH */
  1609. case OP_RETURN: case OP_TAILCALL: {
  1610. if (fs->needclose)
  1611. SETARG_k(*pc, 1); /* signal that it needs to close */
  1612. if (p->is_vararg)
  1613. SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
  1614. break;
  1615. }
  1616. case OP_JMP: {
  1617. int target = finaltarget(p->code, i);
  1618. fixjump(fs, i, target);
  1619. break;
  1620. }
  1621. default: break;
  1622. }
  1623. }
  1624. }