ltable.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. ** $Id: ltable.c $
  3. ** Lua tables (hash)
  4. ** See Copyright Notice in lua.h
  5. */
  6. #define ltable_c
  7. #define LUA_CORE
  8. #include "lprefix.h"
  9. /*
  10. ** Implementation of tables (aka arrays, objects, or hash tables).
  11. ** Tables keep its elements in two parts: an array part and a hash part.
  12. ** Non-negative integer keys are all candidates to be kept in the array
  13. ** part. The actual size of the array is the largest 'n' such that
  14. ** more than half the slots between 1 and n are in use.
  15. ** Hash uses a mix of chained scatter table with Brent's variation.
  16. ** A main invariant of these tables is that, if an element is not
  17. ** in its main position (i.e. the 'original' position that its hash gives
  18. ** to it), then the colliding element is in its own main position.
  19. ** Hence even when the load factor reaches 100%, performance remains good.
  20. */
  21. #include <math.h>
  22. #include <limits.h>
  23. #include "lua.h"
  24. #include "ldebug.h"
  25. #include "ldo.h"
  26. #include "lgc.h"
  27. #include "lmem.h"
  28. #include "lobject.h"
  29. #include "lstate.h"
  30. #include "lstring.h"
  31. #include "ltable.h"
  32. #include "lvm.h"
  33. /*
  34. ** MAXABITS is the largest integer such that MAXASIZE fits in an
  35. ** unsigned int.
  36. */
  37. #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
  38. /*
  39. ** MAXASIZE is the maximum size of the array part. It is the minimum
  40. ** between 2^MAXABITS and the maximum size that, measured in bytes,
  41. ** fits in a 'size_t'.
  42. */
  43. #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
  44. /*
  45. ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
  46. ** signed int.
  47. */
  48. #define MAXHBITS (MAXABITS - 1)
  49. /*
  50. ** MAXHSIZE is the maximum size of the hash part. It is the minimum
  51. ** between 2^MAXHBITS and the maximum size such that, measured in bytes,
  52. ** it fits in a 'size_t'.
  53. */
  54. #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
  55. /*
  56. ** When the original hash value is good, hashing by a power of 2
  57. ** avoids the cost of '%'.
  58. */
  59. #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
  60. /*
  61. ** for other types, it is better to avoid modulo by power of 2, as
  62. ** they can have many 2 factors.
  63. */
  64. #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
  65. #define hashstr(t,str) hashpow2(t, (str)->hash)
  66. #define hashboolean(t,p) hashpow2(t, p)
  67. #define hashpointer(t,p) hashmod(t, point2uint(p))
  68. #define dummynode (&dummynode_)
  69. static const Node dummynode_ = {
  70. {{NULL}, LUA_VEMPTY, /* value's value and type */
  71. LUA_VNIL, 0, {NULL}} /* key type, next, and key value */
  72. };
  73. static const TValue absentkey = {ABSTKEYCONSTANT};
  74. /*
  75. ** Hash for integers. To allow a good hash, use the remainder operator
  76. ** ('%'). If integer fits as a non-negative int, compute an int
  77. ** remainder, which is faster. Otherwise, use an unsigned-integer
  78. ** remainder, which uses all bits and ensures a non-negative result.
  79. */
  80. static Node *hashint (const Table *t, lua_Integer i) {
  81. lua_Unsigned ui = l_castS2U(i);
  82. if (ui <= (unsigned int)INT_MAX)
  83. return hashmod(t, cast_int(ui));
  84. else
  85. return hashmod(t, ui);
  86. }
  87. /*
  88. ** Hash for floating-point numbers.
  89. ** The main computation should be just
  90. ** n = frexp(n, &i); return (n * INT_MAX) + i
  91. ** but there are some numerical subtleties.
  92. ** In a two-complement representation, INT_MAX does not has an exact
  93. ** representation as a float, but INT_MIN does; because the absolute
  94. ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
  95. ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
  96. ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
  97. ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
  98. ** INT_MIN.
  99. */
  100. #if !defined(l_hashfloat)
  101. static int l_hashfloat (lua_Number n) {
  102. int i;
  103. lua_Integer ni;
  104. n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
  105. if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
  106. lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
  107. return 0;
  108. }
  109. else { /* normal case */
  110. unsigned int u = cast_uint(i) + cast_uint(ni);
  111. return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
  112. }
  113. }
  114. #endif
  115. /*
  116. ** returns the 'main' position of an element in a table (that is,
  117. ** the index of its hash value).
  118. */
  119. static Node *mainpositionTV (const Table *t, const TValue *key) {
  120. switch (ttypetag(key)) {
  121. case LUA_VNUMINT: {
  122. lua_Integer i = ivalue(key);
  123. return hashint(t, i);
  124. }
  125. case LUA_VNUMFLT: {
  126. lua_Number n = fltvalue(key);
  127. return hashmod(t, l_hashfloat(n));
  128. }
  129. case LUA_VSHRSTR: {
  130. TString *ts = tsvalue(key);
  131. return hashstr(t, ts);
  132. }
  133. case LUA_VLNGSTR: {
  134. TString *ts = tsvalue(key);
  135. return hashpow2(t, luaS_hashlongstr(ts));
  136. }
  137. case LUA_VFALSE:
  138. return hashboolean(t, 0);
  139. case LUA_VTRUE:
  140. return hashboolean(t, 1);
  141. case LUA_VLIGHTUSERDATA: {
  142. void *p = pvalue(key);
  143. return hashpointer(t, p);
  144. }
  145. case LUA_VLCF: {
  146. lua_CFunction f = fvalue(key);
  147. return hashpointer(t, f);
  148. }
  149. default: {
  150. GCObject *o = gcvalue(key);
  151. return hashpointer(t, o);
  152. }
  153. }
  154. }
  155. l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
  156. TValue key;
  157. getnodekey(cast(lua_State *, NULL), &key, nd);
  158. return mainpositionTV(t, &key);
  159. }
  160. /*
  161. ** Check whether key 'k1' is equal to the key in node 'n2'. This
  162. ** equality is raw, so there are no metamethods. Floats with integer
  163. ** values have been normalized, so integers cannot be equal to
  164. ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
  165. ** that short strings are handled in the default case.
  166. ** A true 'deadok' means to accept dead keys as equal to their original
  167. ** values. All dead keys are compared in the default case, by pointer
  168. ** identity. (Only collectable objects can produce dead keys.) Note that
  169. ** dead long strings are also compared by identity.
  170. ** Once a key is dead, its corresponding value may be collected, and
  171. ** then another value can be created with the same address. If this
  172. ** other value is given to 'next', 'equalkey' will signal a false
  173. ** positive. In a regular traversal, this situation should never happen,
  174. ** as all keys given to 'next' came from the table itself, and therefore
  175. ** could not have been collected. Outside a regular traversal, we
  176. ** have garbage in, garbage out. What is relevant is that this false
  177. ** positive does not break anything. (In particular, 'next' will return
  178. ** some other valid item on the table or nil.)
  179. */
  180. static int equalkey (const TValue *k1, const Node *n2, int deadok) {
  181. if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
  182. !(deadok && keyisdead(n2) && iscollectable(k1)))
  183. return 0; /* cannot be same key */
  184. switch (keytt(n2)) {
  185. case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
  186. return 1;
  187. case LUA_VNUMINT:
  188. return (ivalue(k1) == keyival(n2));
  189. case LUA_VNUMFLT:
  190. return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
  191. case LUA_VLIGHTUSERDATA:
  192. return pvalue(k1) == pvalueraw(keyval(n2));
  193. case LUA_VLCF:
  194. return fvalue(k1) == fvalueraw(keyval(n2));
  195. case ctb(LUA_VLNGSTR):
  196. return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
  197. default:
  198. return gcvalue(k1) == gcvalueraw(keyval(n2));
  199. }
  200. }
  201. /*
  202. ** True if value of 'alimit' is equal to the real size of the array
  203. ** part of table 't'. (Otherwise, the array part must be larger than
  204. ** 'alimit'.)
  205. */
  206. #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
  207. /*
  208. ** Returns the real size of the 'array' array
  209. */
  210. LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
  211. if (limitequalsasize(t))
  212. return t->alimit; /* this is the size */
  213. else {
  214. unsigned int size = t->alimit;
  215. /* compute the smallest power of 2 not smaller than 'n' */
  216. size |= (size >> 1);
  217. size |= (size >> 2);
  218. size |= (size >> 4);
  219. size |= (size >> 8);
  220. size |= (size >> 16);
  221. #if (UINT_MAX >> 30) > 3
  222. size |= (size >> 32); /* unsigned int has more than 32 bits */
  223. #endif
  224. size++;
  225. lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
  226. return size;
  227. }
  228. }
  229. /*
  230. ** Check whether real size of the array is a power of 2.
  231. ** (If it is not, 'alimit' cannot be changed to any other value
  232. ** without changing the real size.)
  233. */
  234. static int ispow2realasize (const Table *t) {
  235. return (!isrealasize(t) || ispow2(t->alimit));
  236. }
  237. static unsigned int setlimittosize (Table *t) {
  238. t->alimit = luaH_realasize(t);
  239. setrealasize(t);
  240. return t->alimit;
  241. }
  242. #define limitasasize(t) check_exp(isrealasize(t), t->alimit)
  243. /*
  244. ** "Generic" get version. (Not that generic: not valid for integers,
  245. ** which may be in array part, nor for floats with integral values.)
  246. ** See explanation about 'deadok' in function 'equalkey'.
  247. */
  248. static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
  249. Node *n = mainpositionTV(t, key);
  250. for (;;) { /* check whether 'key' is somewhere in the chain */
  251. if (equalkey(key, n, deadok))
  252. return gval(n); /* that's it */
  253. else {
  254. int nx = gnext(n);
  255. if (nx == 0)
  256. return &absentkey; /* not found */
  257. n += nx;
  258. }
  259. }
  260. }
  261. /*
  262. ** returns the index for 'k' if 'k' is an appropriate key to live in
  263. ** the array part of a table, 0 otherwise.
  264. */
  265. static unsigned int arrayindex (lua_Integer k) {
  266. if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
  267. return cast_uint(k); /* 'key' is an appropriate array index */
  268. else
  269. return 0;
  270. }
  271. /*
  272. ** returns the index of a 'key' for table traversals. First goes all
  273. ** elements in the array part, then elements in the hash part. The
  274. ** beginning of a traversal is signaled by 0.
  275. */
  276. static unsigned int findindex (lua_State *L, Table *t, TValue *key,
  277. unsigned int asize) {
  278. unsigned int i;
  279. if (ttisnil(key)) return 0; /* first iteration */
  280. i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
  281. if (i - 1u < asize) /* is 'key' inside array part? */
  282. return i; /* yes; that's the index */
  283. else {
  284. const TValue *n = getgeneric(t, key, 1);
  285. if (l_unlikely(isabstkey(n)))
  286. luaG_runerror(L, "invalid key to 'next'"); /* key not found */
  287. i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
  288. /* hash elements are numbered after array ones */
  289. return (i + 1) + asize;
  290. }
  291. }
  292. int luaH_next (lua_State *L, Table *t, StkId key) {
  293. unsigned int asize = luaH_realasize(t);
  294. unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
  295. for (; i < asize; i++) { /* try first array part */
  296. if (!isempty(&t->array[i])) { /* a non-empty entry? */
  297. setivalue(s2v(key), i + 1);
  298. setobj2s(L, key + 1, &t->array[i]);
  299. return 1;
  300. }
  301. }
  302. for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
  303. if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
  304. Node *n = gnode(t, i);
  305. getnodekey(L, s2v(key), n);
  306. setobj2s(L, key + 1, gval(n));
  307. return 1;
  308. }
  309. }
  310. return 0; /* no more elements */
  311. }
  312. static void freehash (lua_State *L, Table *t) {
  313. if (!isdummy(t))
  314. luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
  315. }
  316. /*
  317. ** {=============================================================
  318. ** Rehash
  319. ** ==============================================================
  320. */
  321. /*
  322. ** Compute the optimal size for the array part of table 't'. 'nums' is a
  323. ** "count array" where 'nums[i]' is the number of integers in the table
  324. ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
  325. ** integer keys in the table and leaves with the number of keys that
  326. ** will go to the array part; return the optimal size. (The condition
  327. ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
  328. */
  329. static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
  330. int i;
  331. unsigned int twotoi; /* 2^i (candidate for optimal size) */
  332. unsigned int a = 0; /* number of elements smaller than 2^i */
  333. unsigned int na = 0; /* number of elements to go to array part */
  334. unsigned int optimal = 0; /* optimal size for array part */
  335. /* loop while keys can fill more than half of total size */
  336. for (i = 0, twotoi = 1;
  337. twotoi > 0 && *pna > twotoi / 2;
  338. i++, twotoi *= 2) {
  339. a += nums[i];
  340. if (a > twotoi/2) { /* more than half elements present? */
  341. optimal = twotoi; /* optimal size (till now) */
  342. na = a; /* all elements up to 'optimal' will go to array part */
  343. }
  344. }
  345. lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
  346. *pna = na;
  347. return optimal;
  348. }
  349. static int countint (lua_Integer key, unsigned int *nums) {
  350. unsigned int k = arrayindex(key);
  351. if (k != 0) { /* is 'key' an appropriate array index? */
  352. nums[luaO_ceillog2(k)]++; /* count as such */
  353. return 1;
  354. }
  355. else
  356. return 0;
  357. }
  358. /*
  359. ** Count keys in array part of table 't': Fill 'nums[i]' with
  360. ** number of keys that will go into corresponding slice and return
  361. ** total number of non-nil keys.
  362. */
  363. static unsigned int numusearray (const Table *t, unsigned int *nums) {
  364. int lg;
  365. unsigned int ttlg; /* 2^lg */
  366. unsigned int ause = 0; /* summation of 'nums' */
  367. unsigned int i = 1; /* count to traverse all array keys */
  368. unsigned int asize = limitasasize(t); /* real array size */
  369. /* traverse each slice */
  370. for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
  371. unsigned int lc = 0; /* counter */
  372. unsigned int lim = ttlg;
  373. if (lim > asize) {
  374. lim = asize; /* adjust upper limit */
  375. if (i > lim)
  376. break; /* no more elements to count */
  377. }
  378. /* count elements in range (2^(lg - 1), 2^lg] */
  379. for (; i <= lim; i++) {
  380. if (!isempty(&t->array[i-1]))
  381. lc++;
  382. }
  383. nums[lg] += lc;
  384. ause += lc;
  385. }
  386. return ause;
  387. }
  388. static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
  389. int totaluse = 0; /* total number of elements */
  390. int ause = 0; /* elements added to 'nums' (can go to array part) */
  391. int i = sizenode(t);
  392. while (i--) {
  393. Node *n = &t->node[i];
  394. if (!isempty(gval(n))) {
  395. if (keyisinteger(n))
  396. ause += countint(keyival(n), nums);
  397. totaluse++;
  398. }
  399. }
  400. *pna += ause;
  401. return totaluse;
  402. }
  403. /*
  404. ** Creates an array for the hash part of a table with the given
  405. ** size, or reuses the dummy node if size is zero.
  406. ** The computation for size overflow is in two steps: the first
  407. ** comparison ensures that the shift in the second one does not
  408. ** overflow.
  409. */
  410. static void setnodevector (lua_State *L, Table *t, unsigned int size) {
  411. if (size == 0) { /* no elements to hash part? */
  412. t->node = cast(Node *, dummynode); /* use common 'dummynode' */
  413. t->lsizenode = 0;
  414. t->lastfree = NULL; /* signal that it is using dummy node */
  415. }
  416. else {
  417. int i;
  418. int lsize = luaO_ceillog2(size);
  419. if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
  420. luaG_runerror(L, "table overflow");
  421. size = twoto(lsize);
  422. t->node = luaM_newvector(L, size, Node);
  423. for (i = 0; i < (int)size; i++) {
  424. Node *n = gnode(t, i);
  425. gnext(n) = 0;
  426. setnilkey(n);
  427. setempty(gval(n));
  428. }
  429. t->lsizenode = cast_byte(lsize);
  430. t->lastfree = gnode(t, size); /* all positions are free */
  431. }
  432. }
  433. /*
  434. ** (Re)insert all elements from the hash part of 'ot' into table 't'.
  435. */
  436. static void reinsert (lua_State *L, Table *ot, Table *t) {
  437. int j;
  438. int size = sizenode(ot);
  439. for (j = 0; j < size; j++) {
  440. Node *old = gnode(ot, j);
  441. if (!isempty(gval(old))) {
  442. /* doesn't need barrier/invalidate cache, as entry was
  443. already present in the table */
  444. TValue k;
  445. getnodekey(L, &k, old);
  446. luaH_set(L, t, &k, gval(old));
  447. }
  448. }
  449. }
  450. /*
  451. ** Exchange the hash part of 't1' and 't2'.
  452. */
  453. static void exchangehashpart (Table *t1, Table *t2) {
  454. lu_byte lsizenode = t1->lsizenode;
  455. Node *node = t1->node;
  456. Node *lastfree = t1->lastfree;
  457. t1->lsizenode = t2->lsizenode;
  458. t1->node = t2->node;
  459. t1->lastfree = t2->lastfree;
  460. t2->lsizenode = lsizenode;
  461. t2->node = node;
  462. t2->lastfree = lastfree;
  463. }
  464. /*
  465. ** Resize table 't' for the new given sizes. Both allocations (for
  466. ** the hash part and for the array part) can fail, which creates some
  467. ** subtleties. If the first allocation, for the hash part, fails, an
  468. ** error is raised and that is it. Otherwise, it copies the elements from
  469. ** the shrinking part of the array (if it is shrinking) into the new
  470. ** hash. Then it reallocates the array part. If that fails, the table
  471. ** is in its original state; the function frees the new hash part and then
  472. ** raises the allocation error. Otherwise, it sets the new hash part
  473. ** into the table, initializes the new part of the array (if any) with
  474. ** nils and reinserts the elements of the old hash back into the new
  475. ** parts of the table.
  476. */
  477. void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
  478. unsigned int nhsize) {
  479. unsigned int i;
  480. Table newt; /* to keep the new hash part */
  481. unsigned int oldasize = setlimittosize(t);
  482. TValue *newarray;
  483. /* create new hash part with appropriate size into 'newt' */
  484. setnodevector(L, &newt, nhsize);
  485. if (newasize < oldasize) { /* will array shrink? */
  486. t->alimit = newasize; /* pretend array has new size... */
  487. exchangehashpart(t, &newt); /* and new hash */
  488. /* re-insert into the new hash the elements from vanishing slice */
  489. for (i = newasize; i < oldasize; i++) {
  490. if (!isempty(&t->array[i]))
  491. luaH_setint(L, t, i + 1, &t->array[i]);
  492. }
  493. t->alimit = oldasize; /* restore current size... */
  494. exchangehashpart(t, &newt); /* and hash (in case of errors) */
  495. }
  496. /* allocate new array */
  497. newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
  498. if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
  499. freehash(L, &newt); /* release new hash part */
  500. luaM_error(L); /* raise error (with array unchanged) */
  501. }
  502. /* allocation ok; initialize new part of the array */
  503. exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
  504. t->array = newarray; /* set new array part */
  505. t->alimit = newasize;
  506. for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
  507. setempty(&t->array[i]);
  508. /* re-insert elements from old hash part into new parts */
  509. reinsert(L, &newt, t); /* 'newt' now has the old hash */
  510. freehash(L, &newt); /* free old hash part */
  511. }
  512. void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
  513. int nsize = allocsizenode(t);
  514. luaH_resize(L, t, nasize, nsize);
  515. }
  516. /*
  517. ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
  518. */
  519. static void rehash (lua_State *L, Table *t, const TValue *ek) {
  520. unsigned int asize; /* optimal size for array part */
  521. unsigned int na; /* number of keys in the array part */
  522. unsigned int nums[MAXABITS + 1];
  523. int i;
  524. int totaluse;
  525. for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
  526. setlimittosize(t);
  527. na = numusearray(t, nums); /* count keys in array part */
  528. totaluse = na; /* all those keys are integer keys */
  529. totaluse += numusehash(t, nums, &na); /* count keys in hash part */
  530. /* count extra key */
  531. if (ttisinteger(ek))
  532. na += countint(ivalue(ek), nums);
  533. totaluse++;
  534. /* compute new size for array part */
  535. asize = computesizes(nums, &na);
  536. /* resize the table to new computed sizes */
  537. luaH_resize(L, t, asize, totaluse - na);
  538. }
  539. /*
  540. ** }=============================================================
  541. */
  542. Table *luaH_new (lua_State *L) {
  543. GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
  544. Table *t = gco2t(o);
  545. t->metatable = NULL;
  546. t->flags = cast_byte(maskflags); /* table has no metamethod fields */
  547. t->array = NULL;
  548. t->alimit = 0;
  549. setnodevector(L, t, 0);
  550. return t;
  551. }
  552. void luaH_free (lua_State *L, Table *t) {
  553. freehash(L, t);
  554. luaM_freearray(L, t->array, luaH_realasize(t));
  555. luaM_free(L, t);
  556. }
  557. static Node *getfreepos (Table *t) {
  558. if (!isdummy(t)) {
  559. while (t->lastfree > t->node) {
  560. t->lastfree--;
  561. if (keyisnil(t->lastfree))
  562. return t->lastfree;
  563. }
  564. }
  565. return NULL; /* could not find a free place */
  566. }
  567. /*
  568. ** inserts a new key into a hash table; first, check whether key's main
  569. ** position is free. If not, check whether colliding node is in its main
  570. ** position or not: if it is not, move colliding node to an empty place and
  571. ** put new key in its main position; otherwise (colliding node is in its main
  572. ** position), new key goes to an empty position.
  573. */
  574. void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
  575. Node *mp;
  576. TValue aux;
  577. if (l_unlikely(ttisnil(key)))
  578. luaG_runerror(L, "table index is nil");
  579. else if (ttisfloat(key)) {
  580. lua_Number f = fltvalue(key);
  581. lua_Integer k;
  582. if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
  583. setivalue(&aux, k);
  584. key = &aux; /* insert it as an integer */
  585. }
  586. else if (l_unlikely(luai_numisnan(f)))
  587. luaG_runerror(L, "table index is NaN");
  588. }
  589. if (ttisnil(value))
  590. return; /* do not insert nil values */
  591. mp = mainpositionTV(t, key);
  592. if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
  593. Node *othern;
  594. Node *f = getfreepos(t); /* get a free place */
  595. if (f == NULL) { /* cannot find a free place? */
  596. rehash(L, t, key); /* grow table */
  597. /* whatever called 'newkey' takes care of TM cache */
  598. luaH_set(L, t, key, value); /* insert key into grown table */
  599. return;
  600. }
  601. lua_assert(!isdummy(t));
  602. othern = mainpositionfromnode(t, mp);
  603. if (othern != mp) { /* is colliding node out of its main position? */
  604. /* yes; move colliding node into free position */
  605. while (othern + gnext(othern) != mp) /* find previous */
  606. othern += gnext(othern);
  607. gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
  608. *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
  609. if (gnext(mp) != 0) {
  610. gnext(f) += cast_int(mp - f); /* correct 'next' */
  611. gnext(mp) = 0; /* now 'mp' is free */
  612. }
  613. setempty(gval(mp));
  614. }
  615. else { /* colliding node is in its own main position */
  616. /* new node will go into free position */
  617. if (gnext(mp) != 0)
  618. gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
  619. else lua_assert(gnext(f) == 0);
  620. gnext(mp) = cast_int(f - mp);
  621. mp = f;
  622. }
  623. }
  624. setnodekey(L, mp, key);
  625. luaC_barrierback(L, obj2gco(t), key);
  626. lua_assert(isempty(gval(mp)));
  627. setobj2t(L, gval(mp), value);
  628. }
  629. /*
  630. ** Search function for integers. If integer is inside 'alimit', get it
  631. ** directly from the array part. Otherwise, if 'alimit' is not equal to
  632. ** the real size of the array, key still can be in the array part. In
  633. ** this case, try to avoid a call to 'luaH_realasize' when key is just
  634. ** one more than the limit (so that it can be incremented without
  635. ** changing the real size of the array).
  636. */
  637. const TValue *luaH_getint (Table *t, lua_Integer key) {
  638. if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */
  639. return &t->array[key - 1];
  640. else if (!limitequalsasize(t) && /* key still may be in the array part? */
  641. (l_castS2U(key) == t->alimit + 1 ||
  642. l_castS2U(key) - 1u < luaH_realasize(t))) {
  643. t->alimit = cast_uint(key); /* probably '#t' is here now */
  644. return &t->array[key - 1];
  645. }
  646. else {
  647. Node *n = hashint(t, key);
  648. for (;;) { /* check whether 'key' is somewhere in the chain */
  649. if (keyisinteger(n) && keyival(n) == key)
  650. return gval(n); /* that's it */
  651. else {
  652. int nx = gnext(n);
  653. if (nx == 0) break;
  654. n += nx;
  655. }
  656. }
  657. return &absentkey;
  658. }
  659. }
  660. /*
  661. ** search function for short strings
  662. */
  663. const TValue *luaH_getshortstr (Table *t, TString *key) {
  664. Node *n = hashstr(t, key);
  665. lua_assert(key->tt == LUA_VSHRSTR);
  666. for (;;) { /* check whether 'key' is somewhere in the chain */
  667. if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
  668. return gval(n); /* that's it */
  669. else {
  670. int nx = gnext(n);
  671. if (nx == 0)
  672. return &absentkey; /* not found */
  673. n += nx;
  674. }
  675. }
  676. }
  677. const TValue *luaH_getstr (Table *t, TString *key) {
  678. if (key->tt == LUA_VSHRSTR)
  679. return luaH_getshortstr(t, key);
  680. else { /* for long strings, use generic case */
  681. TValue ko;
  682. setsvalue(cast(lua_State *, NULL), &ko, key);
  683. return getgeneric(t, &ko, 0);
  684. }
  685. }
  686. /*
  687. ** main search function
  688. */
  689. const TValue *luaH_get (Table *t, const TValue *key) {
  690. switch (ttypetag(key)) {
  691. case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
  692. case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
  693. case LUA_VNIL: return &absentkey;
  694. case LUA_VNUMFLT: {
  695. lua_Integer k;
  696. if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
  697. return luaH_getint(t, k); /* use specialized version */
  698. /* else... */
  699. } /* FALLTHROUGH */
  700. default:
  701. return getgeneric(t, key, 0);
  702. }
  703. }
  704. /*
  705. ** Finish a raw "set table" operation, where 'slot' is where the value
  706. ** should have been (the result of a previous "get table").
  707. ** Beware: when using this function you probably need to check a GC
  708. ** barrier and invalidate the TM cache.
  709. */
  710. void luaH_finishset (lua_State *L, Table *t, const TValue *key,
  711. const TValue *slot, TValue *value) {
  712. if (isabstkey(slot))
  713. luaH_newkey(L, t, key, value);
  714. else
  715. setobj2t(L, cast(TValue *, slot), value);
  716. }
  717. /*
  718. ** beware: when using this function you probably need to check a GC
  719. ** barrier and invalidate the TM cache.
  720. */
  721. void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
  722. const TValue *slot = luaH_get(t, key);
  723. luaH_finishset(L, t, key, slot, value);
  724. }
  725. void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
  726. const TValue *p = luaH_getint(t, key);
  727. if (isabstkey(p)) {
  728. TValue k;
  729. setivalue(&k, key);
  730. luaH_newkey(L, t, &k, value);
  731. }
  732. else
  733. setobj2t(L, cast(TValue *, p), value);
  734. }
  735. /*
  736. ** Try to find a boundary in the hash part of table 't'. From the
  737. ** caller, we know that 'j' is zero or present and that 'j + 1' is
  738. ** present. We want to find a larger key that is absent from the
  739. ** table, so that we can do a binary search between the two keys to
  740. ** find a boundary. We keep doubling 'j' until we get an absent index.
  741. ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
  742. ** absent, we are ready for the binary search. ('j', being max integer,
  743. ** is larger or equal to 'i', but it cannot be equal because it is
  744. ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
  745. ** boundary. ('j + 1' cannot be a present integer key because it is
  746. ** not a valid integer in Lua.)
  747. */
  748. static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
  749. lua_Unsigned i;
  750. if (j == 0) j++; /* the caller ensures 'j + 1' is present */
  751. do {
  752. i = j; /* 'i' is a present index */
  753. if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
  754. j *= 2;
  755. else {
  756. j = LUA_MAXINTEGER;
  757. if (isempty(luaH_getint(t, j))) /* t[j] not present? */
  758. break; /* 'j' now is an absent index */
  759. else /* weird case */
  760. return j; /* well, max integer is a boundary... */
  761. }
  762. } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
  763. /* i < j && t[i] present && t[j] absent */
  764. while (j - i > 1u) { /* do a binary search between them */
  765. lua_Unsigned m = (i + j) / 2;
  766. if (isempty(luaH_getint(t, m))) j = m;
  767. else i = m;
  768. }
  769. return i;
  770. }
  771. static unsigned int binsearch (const TValue *array, unsigned int i,
  772. unsigned int j) {
  773. while (j - i > 1u) { /* binary search */
  774. unsigned int m = (i + j) / 2;
  775. if (isempty(&array[m - 1])) j = m;
  776. else i = m;
  777. }
  778. return i;
  779. }
  780. /*
  781. ** Try to find a boundary in table 't'. (A 'boundary' is an integer index
  782. ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
  783. ** and 'maxinteger' if t[maxinteger] is present.)
  784. ** (In the next explanation, we use Lua indices, that is, with base 1.
  785. ** The code itself uses base 0 when indexing the array part of the table.)
  786. ** The code starts with 'limit = t->alimit', a position in the array
  787. ** part that may be a boundary.
  788. **
  789. ** (1) If 't[limit]' is empty, there must be a boundary before it.
  790. ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
  791. ** is present. If so, it is a boundary. Otherwise, do a binary search
  792. ** between 0 and limit to find a boundary. In both cases, try to
  793. ** use this boundary as the new 'alimit', as a hint for the next call.
  794. **
  795. ** (2) If 't[limit]' is not empty and the array has more elements
  796. ** after 'limit', try to find a boundary there. Again, try first
  797. ** the special case (which should be quite frequent) where 'limit+1'
  798. ** is empty, so that 'limit' is a boundary. Otherwise, check the
  799. ** last element of the array part. If it is empty, there must be a
  800. ** boundary between the old limit (present) and the last element
  801. ** (absent), which is found with a binary search. (This boundary always
  802. ** can be a new limit.)
  803. **
  804. ** (3) The last case is when there are no elements in the array part
  805. ** (limit == 0) or its last element (the new limit) is present.
  806. ** In this case, must check the hash part. If there is no hash part
  807. ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
  808. ** 'hash_search' to find a boundary in the hash part of the table.
  809. ** (In those cases, the boundary is not inside the array part, and
  810. ** therefore cannot be used as a new limit.)
  811. */
  812. lua_Unsigned luaH_getn (Table *t) {
  813. unsigned int limit = t->alimit;
  814. if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
  815. /* there must be a boundary before 'limit' */
  816. if (limit >= 2 && !isempty(&t->array[limit - 2])) {
  817. /* 'limit - 1' is a boundary; can it be a new limit? */
  818. if (ispow2realasize(t) && !ispow2(limit - 1)) {
  819. t->alimit = limit - 1;
  820. setnorealasize(t); /* now 'alimit' is not the real size */
  821. }
  822. return limit - 1;
  823. }
  824. else { /* must search for a boundary in [0, limit] */
  825. unsigned int boundary = binsearch(t->array, 0, limit);
  826. /* can this boundary represent the real size of the array? */
  827. if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
  828. t->alimit = boundary; /* use it as the new limit */
  829. setnorealasize(t);
  830. }
  831. return boundary;
  832. }
  833. }
  834. /* 'limit' is zero or present in table */
  835. if (!limitequalsasize(t)) { /* (2)? */
  836. /* 'limit' > 0 and array has more elements after 'limit' */
  837. if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
  838. return limit; /* this is the boundary */
  839. /* else, try last element in the array */
  840. limit = luaH_realasize(t);
  841. if (isempty(&t->array[limit - 1])) { /* empty? */
  842. /* there must be a boundary in the array after old limit,
  843. and it must be a valid new limit */
  844. unsigned int boundary = binsearch(t->array, t->alimit, limit);
  845. t->alimit = boundary;
  846. return boundary;
  847. }
  848. /* else, new limit is present in the table; check the hash part */
  849. }
  850. /* (3) 'limit' is the last element and either is zero or present in table */
  851. lua_assert(limit == luaH_realasize(t) &&
  852. (limit == 0 || !isempty(&t->array[limit - 1])));
  853. if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
  854. return limit; /* 'limit + 1' is absent */
  855. else /* 'limit + 1' is also present */
  856. return hash_search(t, limit);
  857. }
  858. #if defined(LUA_DEBUG)
  859. /* export these functions for the test library */
  860. Node *luaH_mainposition (const Table *t, const TValue *key) {
  861. return mainpositionTV(t, key);
  862. }
  863. int luaH_isdummy (const Table *t) { return isdummy(t); }
  864. #endif